Biểu diễn dưới dạng phép nhân ma trận Hạt nhân (đại số tuyến tính)

Xét một biến đổi tuyến tính được biểu diễn bởi một ma trận A cỡ m × n với các hệ số trên một trường K (thường là R {\displaystyle \mathbb {R} } hoặc C {\displaystyle \mathbb {C} } ), tức là tác động lên các vectơ cột x với n thành phần trên K. Hạt nhân của ánh xạ này là tập hợp các nghiệm của phương trình Ax = 0, với 0 được hiểu là vectơ không. Số chiều của hạt nhân của A được gọi là số vô hiệu của A. Dạng thức hóa như sau:

N ⁡ ( A ) = Null ⁡ ( A ) = ker ⁡ ( A ) = { x ∈ K n | A x = 0 } . {\displaystyle \operatorname {N} (A)=\operatorname {Null} (A)=\operatorname {ker} (A)=\left\{\mathbf {x} \in K^{n}|A\mathbf {x} =\mathbf {0} \right\}.}

Phương trình ma trận trên là tương đương với hệ phương trình tuyến tính thuần nhất sau:

A x = 0 ⇔ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 ⋮ ⋮ ⋮ ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 . {\displaystyle A\mathbf {x} =\mathbf {0} \;\;\Leftrightarrow \;\;{\begin{alignedat}{7}a_{11}x_{1}&&\;+\;&&a_{12}x_{2}&&\;+\;\cdots \;+\;&&a_{1n}x_{n}&&\;=\;&&&0\\a_{21}x_{1}&&\;+\;&&a_{22}x_{2}&&\;+\;\cdots \;+\;&&a_{2n}x_{n}&&\;=\;&&&0\\\vdots \;\;\;&&&&\vdots \;\;\;&&&&\vdots \;\;\;&&&&&\;\vdots \\a_{m1}x_{1}&&\;+\;&&a_{m2}x_{2}&&\;+\;\cdots \;+\;&&a_{mn}x_{n}&&\;=\;&&&0{\text{.}}\\\end{alignedat}}}

Vì thế hạt nhân của A là chính là tập nghiệm của hệ phương trình tuyến tính thuần nhất trên.

Các tính chất của không gian con

Hạt nhân của một ma trận A cỡ m × n trên một trường K là không gian con của Kn. Tức là, hạt nhân của A hay tập Null(A) có ba tính chất sau:

  1. Null(A) luôn chứa vectơ không, vì A0 = 0.
  2. Nếu x ∈ Null(A) và y ∈ Null(A), thì x + y ∈ Null(A). Điều này là do tính phân phối của phép nhân ma trận đối với phép cộng.
  3. Nếu x ∈ Null(A) và c là một vô hướng c ∈ K, thì cx ∈ Null(A) vì A(cx) = c(Ax) = c0 = 0.

Không gian hàng của một ma trận

Tích Ax có thể được viết dưới dạng tích vô hướng của các vectơ như sau:

A x = [ a 1 ⋅ x a 2 ⋅ x ⋮ a m ⋅ x ] . {\displaystyle A\mathbf {x} ={\begin{bmatrix}\mathbf {a} _{1}\cdot \mathbf {x} \\\mathbf {a} _{2}\cdot \mathbf {x} \\\vdots \\\mathbf {a} _{m}\cdot \mathbf {x} \end{bmatrix}}.}

Ở đây a1,..., am chỉ các hàng của ma trận A. Suy ra rằng x thuộc hạt nhân của A khi và chỉ khi x trực giao (hay vuông góc) với từng vectơ hàng của A (vì trực giao được định nghĩa là có tích vô hướng bằng 0).

Không gian hàng, hay đối ảnh của ma trận A là span của các vectơ hàng của A. Bằng lập luận như trên, hạt nhân của A là phần bù trực giao của không gian hàng. Tức là, một vectơ x thuộc hạt nhân của A, khi và chỉ khi nó vuông góc với từng vectơ trong không gian hàng của A.

Số chiều của không gian hàng của A được gọi là hạng của A, còn số chiều của hạt nhân của A được gọi là số vô hiệu của A. Các đại lượng này được liên hệ bởi định lý hạng và số vô hiệu

rank ⁡ ( A ) + nullity ⁡ ( A ) = n . {\displaystyle \operatorname {rank} (A)+\operatorname {nullity} (A)=n.} [4]

Không gian hạt nhân trái

Không gian hạt nhân trái, hay đối hạch (cokernel), của một ma trận A gồm các vectơ x sao cho xTA = 0T, trong đó T là ký hiệu cho chuyển vị của một ma trận. Không gian null trái chính là hạt nhân của AT, và là phần bù trực giao của không gian cột của A, và đối ngẫu với đối hạch của biến đổi tuyến tính tương ứng. Hạt nhân, không gian hàng, không gian cột và hạt nhân trái của A là bốn không gian con cơ bản liên quan tới ma trận A.

Hệ phương trình tuyến tính không thuần nhất

Hạt nhân cũng có vai trò trong nghiệm của một hệ phương trình tuyến tính không thuần nhất:

A x = b or a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋮ ⋮ ⋮ ⋮ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m {\displaystyle A\mathbf {x} =\mathbf {b} \;\;\;\;\;\;{\text{or}}\;\;\;\;\;\;{\begin{alignedat}{7}a_{11}x_{1}&&\;+\;&&a_{12}x_{2}&&\;+\;\cdots \;+\;&&a_{1n}x_{n}&&\;=\;&&&b_{1}\\a_{21}x_{1}&&\;+\;&&a_{22}x_{2}&&\;+\;\cdots \;+\;&&a_{2n}x_{n}&&\;=\;&&&b_{2}\\\vdots \;\;\;&&&&\vdots \;\;\;&&&&\vdots \;\;\;&&&&&\;\vdots \\a_{m1}x_{1}&&\;+\;&&a_{m2}x_{2}&&\;+\;\cdots \;+\;&&a_{mn}x_{n}&&\;=\;&&&b_{m}\\\end{alignedat}}}

Nếu uv là hai nghiệm có thể của phương trình trên thì

A ( u − v ) = A u − A v = b − b = 0 {\displaystyle A(\mathbf {u} -\mathbf {v} )=A\mathbf {u} -A\mathbf {v} =\mathbf {b} -\mathbf {b} =\mathbf {0} \,}

Vì vậy, hiệu của hai nghiệm bất kỳ của phương trình Ax = b nằm trong hạt nhân của A.

Từ đó suy ra rằng bất kỳ nghiệm nào của phương trình Ax = b có thể được biểu diễn dưới dạng tổng của một nghiệm cố định v và một phần tử bất kỳ của hạt nhân. Tức là, tập nghiệm của phương trình Ax = b

{ v + x ∣ A v = b ∧ x ∈ Null ⁡ ( A ) } , {\displaystyle \left\{\mathbf {v} +\mathbf {x} \mid A\mathbf {v} =\mathbf {b} \land \mathbf {x} \in \operatorname {Null} (A)\right\},}

Một cách hình học, điều này nói rằng tập nghiệm của Ax = b là hạt nhân của A được tịnh tiến theo vectơ v.

Tài liệu tham khảo

WikiPedia: Hạt nhân (đại số tuyến tính) http://www.matrixanalysis.com/DownloadChapters.htm... http://mathworld.wolfram.com/Kernel.html http://mathworld.wolfram.com/Rank-NullityTheorem.h... http://www.encyclopediaofmath.org/index.php?title=... http://www.khanacademy.org/video/introduction-to-t... http://web.comlab.ox.ac.uk/oucl/work/nick.trefethe... https://mathvault.ca/math-glossary/#null https://www.math.ohiou.edu/courses/math3600/lectur... https://web.archive.org/web/20091031193126/http://... https://web.archive.org/web/20170829031912/http://...